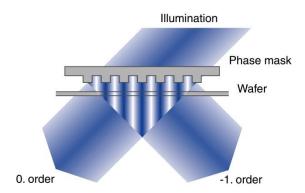
Enabling volume manufacturing of gratings on semiconductor wafers and integrated optics with very low periods down to 260 nm, high accuracy and large grating areas

Holographically produced NFH Phase masks combined with a mask aligner provides volume manufacturing of very small grating periods. Ibsen's period accuracy of -/+ 0.1 Ångström and large grating areas further enhance customer manufacturing performance and yield.

Optional NFH services can kick-start process

Optional NFH services can kick-start process automation at customers, while clear on-mask identification leads to straightforward handling in manufacturing environment.

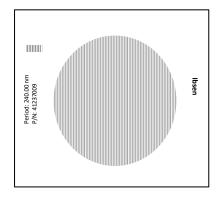

0/-1 order principle

NFH Phase Mask

0/-1 order principle

Features		
Holographically produced in 100% cleanroom environment		
Very low periods down to 260 nm		
Period accuracy and uniformity of +/- 0.01 nm		
High fringe visibility		
Low defect count		
Clear on-mask identification		

Applications	
DFB lasers	
DBR lasers	
Integrated planar optics	
Sensors	
Biochips	



The principle behind 0/-1 order Phase masks

The 0/-1 order Phase mask is optimized to diffract Bragg angle incident light equally into the zero and minus first orders. Self-interference between the two orders creates an interference pattern with a period equal to the

Phase mask period. When the criteria of sustainability (below) is fulfilled, the 0/-1 order Phase mask completely eliminates unwanted orders.

Clear on-mask identification

Product Range and Specifications		
Grating periods	200 nm – 600 nm	
Illumination wavelengths	193 nm – 435 nm	
Material	Fused Silica	
Period accuracy	+/- 0.01 nm	
Period uniformity	+/- 0.01 nm	
Fringe visibility	>98%	

Options

 Custom specifications

Standard Grating and Substrate Sizes	
Grating size	Substrate size
Ø2"	3" x 3" x 2 nm
Customized	5" x 5" x 90 mil

NFH Phase Mask

0/-1 order principle

Criteria of sustainability

In order to ensure a high fringe visibility the zero order and minus first order – and only these two orders – must exist. This can be translated to a necessary relationship between Phase mask period Λ and illumination wavelength λ :

$$\frac{2}{3} \cdot \Lambda <= \lambda \le 2 \cdot \Lambda$$

Calculation of Bragg angle: $\sin\theta_{B} = \lambda/(2 \cdot \Lambda)$

Specifications are subject to change without prior notice.

