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ABSTRACT   

We propose a design methodology for systematic design of surface relief transmission gratings with optimized 

diffraction efficiency. The methodology is based on a gradient-based topology optimization formulation along with 2D 

frequency domain finite element simulations for TE and TM polarized plane waves. The goal of the optimization is to 

find a grating design that maximizes diffraction efficiency for the -1
st
 transmission order when illuminated by 

unpolarized plane waves. Results indicate that a surface relief transmission grating can be designed with a diffraction 

efficiency of more than 40% in a broadband range going from the ultraviolet region, through the visible region and into 

the near-infrared region.  
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1. INTRODUCTION  

Diffraction gratings have been manufactured for over 200 years, with developments driven initially by requirements of 

spectroscopy, where gratings have been applied ever since Joseph von Fraunhofer’s work in the early 1800’s. Over the 

past decades, semiconductor technology has appeared and matured, offering manufacturing technologies applicable to 

transmission gratings, and bringing with it the high-volume, low-cost benefits of semiconductor technology. For this 

reason, dielectric transmission gratings have found widespread use in the ultraviolet, visible and near-infrared spectral 

ranges during the past 5-10 years. These applications rely on grating structures with high diffraction efficiency for the 

specific setup. However, it is very challenging to find efficient grating structures that are efficient from the ultraviolet to 

the near-infrared, due to the diffraction efficiency having a non-trivial dependency on the material distribution of the 

grating. In this work we propose a design procedure for systematic design of broadband surface relief transmission 

gratings with optimized diffraction efficiency. 

Diffraction gratings can be divided into reflection gratings or transmission gratings depending on whether they 

reflect an incident wave or transmit it through the grating. Reflection gratings are very sensitive to the incident angle and 

therefor i.e. difficult to align in a spectrometer. In contrast, transmission gratings are very robust to variation in incident 

angle. Furthermore, reflection gratings have in general lower diffraction efficiency than transmission gratings due to the 

inherent loss in the metal surface. Surface relief gratings and volume phase gratings are the two common types of 

transmission gratings in use. Surface relief gratings can be manufactured by etching into the surface of a glass substrate 

using a mask layer to define the periodic pattern. Volume phase gratings are typically manufactured in a dichromated 

gelatin that is sandwiched between two glass substrates. The refractive index of dichromated gelatin can be changed 

permanently by illumination with laser light, and thus by illuminating the material with an interference pattern, a 

permanent periodic index modulation is created. Surface relief gratings generally have strong index modulation, while 

volume phase gratings have weak index modulation. As a result, volume phase gratings are generally thick gratings and 

have smaller bandwidth [1] compared to surface relief gratings, which are thin gratings with larger bandwidth. The 

dichromated gelatin in volume phase gratings is transparent from ~350 nm through the near-infrared, so volume phase 

gratings can generally not be made for the ultraviolet spectrum. In contrast, surface relief gratings based on fused silica 

can be made for any wavelength range from ultraviolet through near-infrared. Hence we focus our study on surface relief 

transmission gratings in order for the grating to be effective below 350 nm.  
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The dielectric layout of the periodic structure in the surface relief grating determines how much energy of the 

incident wave is distributed in the existing transmission orders. However, as mentioned, it is very challenging to find 

grating structures that are efficient from the ultraviolet to the near-infrared, due to the diffraction efficiency having a 

non-trivial dependency on the material distribution of the grating.  Previous studies have analyzed and optimized the 

diffraction properties for various surface relief transmission grating profiles such as binary [1-8], sinusoidal [1, 2], 

triangular [1, 9], blazed [2, 9] and buried gratings [10,11]. Though many of the presented grating designs are highly 

efficient, they are in most cases only designed to operate at a specific polarization (often TE), and their bandwidths are 

below ~200 nm. In Ref. 6 it is demonstrated that it is also possible to design surface relief gratings with diffraction 

efficiency above 97% for unpolarized illumination, but with a limited bandwidth. In the above studies all the grating 

profiles have a rather simple geometrical shape. In this study we want to lay out a systematic procedure to find grating 

designs with novel geometries without any geometrical restrictions.   

Several studies [12-14] have shown that using layers of different dielectric materials and even thin layers of metal in 

the grating design can enhance the diffraction efficiency of surface relief gratings. Layered design adds more design 

freedom, which in many cases makes it easier to manipulate the transmitted wave to propagate in the direction of the -1
st
 

order. However, it is very challenging to find materials with insignificant loss in the entire frequency range going from 

ultra-violet to near-infrared (especially in the ultraviolet frequency range). For this reason we have limited our grating 

design only to consist of fused silica.  

In previous studies [15–17], a method based on topology optimization [18] has been formulated for designing 

nanostructured periodic surfaces with extreme reflection or transmission properties. The method can even be used for 

designing nanostructured multilayered surfaces displaying prescribed structural color properties [19]. Here we extend the 

initial study by including a near- to far-field transformation of the transmitted wave and converting the transmitted far-

field to diffraction efficiency. With this extension we obtain a procedure based on topology optimization for designing 

surface relief transmission gratings with optimized diffraction properties. 

Topology optimization is a gradient based optimization method that redistributes material in a bounded design 

domain in order to optimize certain responses of the physical system (e.g. maximize diffraction efficiency). The analysis 

for finding the diffraction efficiency for a given grating design is performed with the finite element method [20] in this 

study. Other numerical tools such as the finite difference method [21] could likewise have been used. The topology 

optimization method was originally developed for mechanical design problems [18, 22] but has since then been extended 

to a number of other physics areas including nano-photonics [23–25], antennas [26] and meta-materials [27]. The power 

of this optimization method is that it can suggest novel designs without any geometrical restrictions. However, the 

optimized designs may contain many small details and will therefore be very challenging to fabricate. In order to get 

designs that are simpler to fabricate, one may introduce geometrical constraints in the optimization problem as e.g. seen 

in Ref. 17, where a connectivity constraint in the grating design is introduced. Another workaround is to construct a 

simplified design based on the optimized complex design. Obviously, imposing constraints on the geometrical freedom 

or simplifying an optimized design come at the cost of limiting the achievable diffraction efficiency. 

The rest of the paper is organized as follows. Section 2 describes the finite element modeling procedure, the near- to 

far-field mapping, as well as the calculation of the diffraction efficiency based on the far-field. Section 3 describes the 

design procedure and the optimization problem. Section 4 discusses the optimized surface relief transmission grating 

with maximized diffraction efficiency for the -1
st
 order in the ultraviolet to near infrared spectrum. Section 5 concludes 

on the work. 

 

2. MODELING OF SURFACE RELIEF TRANSMISSION GRATINGS 

2.1 Numerical model  

The numerical setup is similar to previous studies [17, 19] on reflection-type gratings but here extended to work for a 

broadband transmission grating with a dispersive material model. We consider the two fundamental modes of linear 

polarization. Assuming invariance of the electromagnetic properties in the out-of-plane direction, Maxwell’s equations 

simplify to the scalar Helmholtz equation. The scalar Helmholtz equation governs the physics for steady-state 

electromagnetic wave problems with a sinusoidal transverse electric (TE) or transverse magnetic (TM) polarized plane 

wave of angular frequency using  tjexp  to convert from phasor to time notation. The electric field zE  is parallel to 

the grooves and perpendicular to the plane (x, y) of propagation in the TE polarization. Here we state the governing  
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Figure 1: a) A surface relief transmission grating diffracts an incident plane wave. b) The computational domain is simplified to one 

period using periodic boundaries and truncated using perfect matching layers. 

 

equation for a TE polarized wave. Equivalent equations for the TM polarization are easily obtained by interchanging 

zz HE   and rr   . The scalar Helmholtz equation is given as 

 

   02
0

1  
zrzr EkE  , (1) 

 

where r is the relative permittivity, r  is the relative permeability, and ck 0  is the free space wave number. A 

sketch of a surface relief transmission grating with a grating period of d  is shown in Fig. 1(a). A plane wave is assumed 

incident at an angle AOI on the grating. Due to the periodicity along the y-axis we can simplify the numerical analysis 

by modeling a domain of one period with periodic boundaries at p  as sketched in Fig. 1.  The domain is furthermore 

truncated at the left and right boundaries using perfectly matched layers (PML) [20]. The governing equation in the PML 

regions is 
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where xs and ck 0 are complex functions of the position and govern the damping properties of the PML. Thus the 

computational domain is given in 2D and consists of three main regions: a bulk (substrate) region B ; a grating (design) 

region D  and an air region A , see Fig. 1. By truncating the grating structure this way it furthermore implies that the 

reflection on the backside of the substrate is omitted in the numerical work. We assume in other words, that the backside 

of the substrate is coated with a perfect anti-reflection coating. The incident field i
zE  is given as 

 

  rk ˆˆexp 00  rrz
i
z jkEE  , (3) 

where 0zE  is the amplitude of the wave,  Tyx kk ˆ,ˆˆ k is the normalized directional wave vector and  Tyx,ˆ r is the 

spatial position vector. The incident wave is generated by a surface electric current density sJ  on the boundary i  only 

having a z -component given by  
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where inc  is the angle of the incoming wave to the normal of i . The angle of the incoming wave in fused silica can 

easily be derived from the angle of incidence in air using Snell’s law 

    AOI
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1
sin

2

 , (5) 

where 2SiO
r is the wavelength dependent relative permittivity of fused silica (SiO2). The Sellmeier equation models the 

dispersive behavior of fused silica in the following way  
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where  is the wavelength in micrometers. The periodic boundary on p  are given by the Bloch-Floquet condition 

       inrrzz djxEdxE  sinexp0,,  . (7) 

The problem is solved using the finite element method (FEM) [20] and discretization details can be found in [17]. The 

field in close proximity and inside the grating structure is found with the solution of the FEM problem. However, the 

transmitted wave will most likely propagate a distance equal to many wavelengths before reaching a detector. Hence, the 

field of interest is the far-field and not the near-field found from the FEM solution. To accommodate this, a near- to far-

field transformation is performed on the radial component of the scattered field based on Huygen’s principle [20] and 

discarding any terms that decay faster than 1  where   is the observation distance. The radial component of the 

scattered far-field sr
zE can be extracted from the near-field using the following expression from Ref. 20 p. 17  
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where i
zz

s
z EEE   is the scattered field, out  is the observation direction, xn̂  and yn̂  are the unit normal vector 

components at the boundary o . Note that the line integral along the boundary o  in Eq. (8) is only defined along the 

y - axis, because the line for o  is constant with respect to x . The observation direction out  of interest in this study is 

the propagation direction T1  of the -1
st
 order transmitted wave. Thus the transmitted diffraction efficiency   in the 

transmitted -1
st
 order is found as  
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where 1  is the angle for the transmitted -1
st
 order derived from the grating equation 
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where m is the  m
th

 diffraction order and m is the diffraction angle of the m
th

 diffraction order in air. In Eq. (8) we have 

multiplied with   in order to make the diffraction efficiency independent of the observation distance. Note that the 

propagation direction T1  of the -1
st
 order diffracted wave is affected by wavelength and period but not by the 

geometrical shape of the grooves. 
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The numerical model including far-field transform was tested against analytical solutions for structures such as 

a cylinder as well as numerical solutions from commercial software such as GSOLVER. 

 

3. TOPOLOGY OPTIMIZATION PROCEDURE 

3.1 Material distribution by topology optimization 

Light can be reflected and/or refracted at interfaces between two media depending on the spatial placement and 

distribution of the material properties ( r and r ). Hence, control of these material properties allows wave manipulation 

for enhancing desirable optical responses, e.g. creating transmission gratings with optimized diffraction efficiency for 

specified diffraction orders. We employ a standard density-based topology optimization method [24] and restrict our 

investigations to nonmagnetic materials ( 1r ). The optimization method works by varying the distribution of 

materials within a bounded design domain in order to optimize certain responses of the physical system. We use fused 

silica as dielectric material for the substrate and grating structure due to its low loss in the ultraviolet region. However, 

the developed topology optimization methodology can handle any simple (linear, homogeneous, isotropic) material 

combinations including metallic structures [28]. The relative permittivity in the (grating) design domain D  between air 

and substrate can be varied continuously on an element basis between the relative permittivity for air 1air
r  and fused 

silica   2SiO
r  given in Eq. (6) above.  A continuous design variable  1;0 is introduced for each element in the 

design domain D and controls the element material properties. Here e corresponds to air and 1e corresponds to 

fused silica 

 

     Air
r

SiO
re

Air
rer   2,  (11) 

 

The continuous design variable formulation allows us to solve the optimization problem with efficient gradient-based 

design updates [29]. In principle, the optimization may result in “grey-scale” results, i.e. elements that neither 

corresponds to air nor to fused silica, however, the robust design formulation developed in Refs. 30 and 31 and also used 

in [17, 19] ensures almost discrete designs through a continuation strategy. 

 

3.2 Optimization problem 

The idea of the design procedure is to optimize the diffraction efficiency for the transmitted -1
st
 order from a surface 

relief grating illuminated by an unpolarized plane wave. The diffraction efficiency of an unpolarized wave with a given 

wavelength is calculated as the average,   2TMTE   , of the diffraction efficiency from both the TE and TM 

polarized waves. Furthermore, the diffraction efficiency is calculated with a resolution of 10 nm in the prescribed 

wavelength range (190nm – 1100nm). The optimization problem is formulated as a maxmin formulation, that is, the 

lowest diffraction efficiency in the frequency (wavelength) range is maximized. This reduces the risk of the diffraction 

efficiency dropping to 0% for any frequency in the desired range. Furthermore, a volume constraint is imposed to 

prevent congestion in the design domain. The optimization problem maximizing the lowest diffraction efficiency in the 

prescribed wavelength range (190nm – 1100nm) is formulated as  
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Figure 2: The topology optimized dielectric transmission grating design (a) has been repeated over 5 periods for the purpose of 

illustration. The black structure represents the grating structure and white represents regions with air. The actual computational 

domain for one period is shown in the sketched rectangular domain. The resulting diffraction efficiency (b) for the optimized grating 

in the -1st transmission diffracted direction illuminated by an unpolarized plane wave is above 40% for wavelengths between 190 nm 

to 1100 nm. 

 

where k  is the index of the N  angular directions, 
D

V  is the total volume of the design domain D , and   is the 

admissible volume fraction. One might introduce manufacturability as a part of the optimization problems by introducing 

a connectivity constraint (e.g. Ref. 17) to avoid non-connected dielectric “islands” in the grating design. As it turns out 

this is not needed in the presented example and thus to avoid unnecessary computational work the connectivity constraint 

has been omitted here. 

The design is updated iteratively using the gradient-based optimization routine Method of Moving Asymptotes 

(MMA) [32]. The lowest diffraction efficiency for the unpolarized wave given as  in Eq. (12) is used as a performance 

measure for the grating design and the sensitivities are obtained using the adjoint method [21]. Convergence is typically 

reached after 200 to 400 material redistribution steps. We have not utilized parallel computations for the frequency 

sweeps. However, by doing so, the computational time could easily be reduced. 

 

4. RESULTS 

We consider a periodically repeated design domain    (c.f. Fig. 1). The period is 830d nm and the thickness is 

2000Dl nm. The design domain is discretized with 83200  finite elements and a maximum of %65 of fused 

silica can be distributed in the design domain. The angle of incidence in air is  30AOI and the propagation direction of 

the -1
st
 transmission order in air varies between  7.151T for 190 nm and  6.551T

 
for 1100 nm. 

The optimized design for the broadband surface relief grating obtained using the described methodology is 

presented in Fig. 2(a). The depth of the grating is 2000nm meaning that the optimizer makes full use of the design 

domain. Extending the design domain beyond the 2000 nm would most likely improve the diffraction efficiency at the 

cost of increased complexity in the fabrication. The resulting diffraction efficiency for the optimized grating in the -1
st
 

transmission diffracted direction is presented in Fig. 2(b). The optimized grating illuminated by an unpolarized plane 

wave results in a diffraction efficiency above 40% for wavelengths between 190 nm to 1100 nm. However, a high 

difference in diffraction efficiency (polarization dependent loss) for TE and TM polarization is seen at wavelengths 

above 600 nm approximately. At 1100 nm, the efficiency for TE polarization is close to 90%, whereas for TM 

polarization it is below 10%. In case a high polarization dependent loss is undesirable, it may be circumvented by adding 

a constraint on the difference in efficiencies for the two polarizations in the optimization problem. Furthermore, the  
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Figure 3: Field plots (5 periods) of TE/TM polarized plane waves with wavelength of 230 nm, 560 nm and 1060 nm incident on the 

topology optimized grating structure. A semi-transparent overlay of the grating design is added to the field plots in order to show the 

wave propagation inside the grating and in close vicinity. The top panel (a) shows a field plot for a TE polarized wave with a 

wavelength of 560 nm where the interference fringes in the overlapping waves for the 0th and -1st transmission order is clearly seen. 

Panel (b)-(d) and (e)-(f) show the field plots for TE and TM polarized waves, respectively. The propagation direction of the incident 

wave and the -1st transmission order is indicated with black arrows.  

 

objective could also be changed from maximizing the unpolarized spectrum to maximizing the smallest efficiency of the 

two. 

The resulting total fields for either TE or TM illumination at three different wavelengths (230 nm, 560 nm and 

1060 nm) are shown in Fig. 3. A semi-transparent overlay of the grating design is added to the field plots in order to 

show the wave propagation inside the grating and in close proximity. The top panel (a) in Fig. 3 shows a wider field plot 

for the TE polarized wave with a wavelength of 560 nm. Here it is clearly seen how two overlapping waves with 

propagation direction in the 0
th

 and -1
st
 transmission order are formed after the incident wave exits the grating.  The 

diffraction efficiency is approximately 40% and 60% for the 0
th

 and -1
st
 order, respectively. The black arrows in Figs. 

3(b)-3(g) indicate the direction of the incident wave and the -1
st
 transmission order. The task of designing an ultra-

broadband gratings is very challenging both for the big difference in the ratio between grating size and wavelength (i.e. 

how many cycles the wave propagate in grating region), the dispersive behavior of the material and not least the big span 

in propagation direction of the -1
st
 transmission order (c.f. black arrows in Figs. 3(b)-3(d)). 
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Figure 4: Two simplified dielectric transmission grating designs (a)+(c) and the resulting diffraction efficiencies (b)+(d). Simplifying 

the topology optimized grating design comes at the cost of reduced diffraction efficiency. The resulting diffraction efficiencies (b)+(d) 

for the simplified gratings for an unpolarized plane wave with wavelength between 190 nm to 1100 nm are above 30% and 20%, 

respectively. 

 

From Fig. 3 we conclude that the working principle of the optimized grating structure is partly a waveguide 

effect and partly due to reflection at the grating ridge surface. At low wavelengths ( 600 nm), the structure mainly 

acts as a waveguide, guiding the wave in air in the direction of the -1
st
 transmission order. As a waveguide, the grating 

structure works approximately equally well for the two polarizations. For longer wavelengths ( 600 nm), the grating 

structure becomes sub-wavelength and thereby non-guiding. Furthermore, the wave needs to exit the grating at 

increasingly greater angles (compared to the surface normal) in order to be directed towards the -1
st
 transmission order. 

This is achieved mainly by reflection at the grating ridge surface. However, as a reflector, the grating structure is much 

more efficient for the TE polarization than the TM polarization (c.f. Figs. 3(d) and 3(g)). 

The optimized design has many small details and will therefore be very challenging to fabricate. In order to 

both examine how important the small details are for the performance of the transmission grating and to get designs that 

are simpler to fabricate, two simplified gratings are constructed and shown in Fig. 4(a) and 4(c) along with the resulting 

diffraction efficiencies shown in Figs 4(b) and 4(d). The first simplified design is constructed in three parts, whereas the 
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second design is constructed as a smooth arc. Even through the two designs are simplified, they are still quite 

challenging to fabricate.  

 The simplified designs come at the cost of reduced diffraction efficiency (c.f. Figs. 4), as expected. Over the 

considered range of wavelengths, the diffraction efficiencies are above ~30% and ~20% for the first and second 

simplified design, respectively. As such, the diffraction efficiency is not too dependent on the small features of the 

optimized design. 

5. CONCLUSION 

In conclusion we have laid out a systematic procedure for designing surface relief transmission gratings with optimized 

transmission properties. The methodology has been used to design a grating with diffraction efficiency above 40% for 

unpolarized plane waves over a wavelength range from 190 nm (ultraviolet) to 1100 nm (near-infrared). The working 

principles of the optimized grating structure are partly a waveguide effect at short wavelengths and partly due to 

reflection at the grating ridge surface for longer wavelength. Two simplified gratings are constructed in order to decrease 

the fabrication challenges. However, the simplified designs come at the cost of reduced diffraction efficiency. 
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